Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Viruses ; 15(5)2023 05 14.
Article in English | MEDLINE | ID: covidwho-20232730

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Viruses , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Zika Virus Infection/drug therapy , Zika Virus/genetics , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , SARS-CoV-2 , Chikungunya virus/genetics , Peptides/pharmacology , Peptides/therapeutic use
2.
Front Immunol ; 14: 1162739, 2023.
Article in English | MEDLINE | ID: covidwho-2314172

ABSTRACT

Cytokines are secretion proteins that mediate and regulate immunity and inflammation. They are crucial in the progress of acute inflammatory diseases and autoimmunity. In fact, the inhibition of proinflammatory cytokines has been widely tested in the treatment of rheumatoid arthritis (RA). Some of these inhibitors have been used in the treatment of COVID-19 patients to improve survival rates. However, controlling the extent of inflammation with cytokine inhibitors is still a challenge because these molecules are redundant and pleiotropic. Here we review a novel therapeutic approach based on the use of the HSP60-derived Altered Peptide Ligand (APL) designed for RA and repositioned for the treatment of COVID-19 patients with hyperinflammation. HSP60 is a molecular chaperone found in all cells. It is involved in a wide diversity of cellular events including protein folding and trafficking. HSP60 concentration increases during cellular stress, for example inflammation. This protein has a dual role in immunity. Some HSP60-derived soluble epitopes induce inflammation, while others are immunoregulatory. Our HSP60-derived APL decreases the concentration of cytokines and induces the increase of FOXP3+ regulatory T cells (Treg) in various experimental systems. Furthermore, it decreases several cytokines and soluble mediators that are raised in RA, as well as decreases the excessive inflammatory response induced by SARS-CoV-2. This approach can be extended to other inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid , Chaperonin 60 , Humans , COVID-19 , Cytokines/metabolism , Inflammation/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/metabolism , Chaperonin 60/pharmacology , Chaperonin 60/therapeutic use
3.
Indian J Pharmacol ; 55(1): 53-58, 2023.
Article in English | MEDLINE | ID: covidwho-2267521

ABSTRACT

Novel SARS-CoV-2 (COVID-19) is affecting worldwide as declared pandemic by the WHO. Various repositioning and novel therapeutic agents are being evaluated under different clinical setups; however, there is no promising therapeutic agent reported to date. Small molecules like peptides have their popularity as their specificity, delivery, and synthesizability as promising therapeutic agents. In this study, we have reviewed the published literature describing peptide designing, in silico binding mode, antiviral activity, preventive measures, and in vivo assessments. Here, we reported all the results which are promising against SARS-CoV-2 as therapeutic and preventive (vaccine candidates), and their status in the drug development process.


Subject(s)
COVID-19 , Peptidomimetics , Humans , SARS-CoV-2 , Peptidomimetics/pharmacology , Peptidomimetics/therapeutic use , Drug Repositioning , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Peptides/therapeutic use
4.
Allergy ; 78(6): 1639-1653, 2023 06.
Article in English | MEDLINE | ID: covidwho-2223224

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome corona virus (SARS-CoV-2) infection frequently causes severe and prolonged disease but only few specific treatments are available. We aimed to investigate safety and efficacy of a SARS-CoV-2-specific siRNA-peptide dendrimer formulation MIR 19® (siR-7-EM/KK-46) targeting a conserved sequence in known SARS-CoV-2 variants for treatment of COVID-19. METHODS: We conducted an open-label, randomized, controlled multicenter phase II trial (NCT05184127) evaluating safety and efficacy of inhaled siR-7-EM/KK-46 (3.7 mg and 11.1 mg/day: low and high dose, respectively) in comparison with standard etiotropic drug treatment (control group) in patients hospitalized with moderate COVID-19 (N = 52 for each group). The primary endpoint was the time to clinical improvement according to predefined criteria within 14 days of randomization. RESULTS: Patients from the low-dose group achieved the primary endpoint defined by simultaneous achievement of relief of fever, normalization of respiratory rate, reduction of coughing, and oxygen saturation of >95% for 48 h significantly earlier (median 6 days; 95% confidence interval [CI]: 5-7, HR 1.75, p = .0005) than patients from the control group (8 days; 95% CI: 7-10). No significant clinical efficacy was observed for the high-dose group. Adverse events were reported in 26 (50.00%), 25 (48.08%), and 28 (53.85%) patients from the low-, high-dose and control group, respectively. None of them were associated with siR-7-EM/KK-46. CONCLUSIONS: siR-7-EM/KK-46, a SARS-CoV-2-specific siRNA-peptide dendrimer formulation is safe, well tolerated and significantly reduces time to clinical improvement in patients hospitalized with moderate COVID-19 compared to standard therapy in a randomized controlled trial.


Subject(s)
COVID-19 , Dendrimers , Humans , SARS-CoV-2 , RNA, Small Interfering , Treatment Outcome , Peptides/therapeutic use
5.
Bioengineered ; 13(4): 9435-9454, 2022 04.
Article in English | MEDLINE | ID: covidwho-2222482

ABSTRACT

Betacoronaviruses (ß-CoVs) have caused major viral outbreaks in the last two decades in the world. The mutation and recombination abilities in ß-CoVs resulted in zoonotic diseases in humans. Proteins responsible for viral attachment and replication are highly conserved in ß-CoVs. These conserved proteins have been extensively studied as targets for preventing infection and the spread of ß-CoVs. Peptides are among the most promising candidates for developing vaccines and therapeutics against viral pathogens. The immunostimulatory and viral inhibitory potential of natural and synthetic peptides has been extensively studied since the SARS-CoV outbreak. Food-derived peptides demonstrating high antiviral activity can be used to develop effective therapeutics against ß-CoVs. Specificity, tolerability, and customizability of peptides can be explored to develop potent drugs against ß-CoVs. However, the proteolytic susceptibility and low bioavailability of peptides pose challenges for the development of therapeutics. This review illustrates the potential role of peptides in eliciting an adaptive immune response and inhibiting different stages of the ß-CoV life cycle. Further, the challenges and future directions associated with developing peptide-based therapeutics and vaccines against existing and future ß-CoV pathogens have been discussed.


Subject(s)
Coronavirus Infections , Vaccines , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Mutation , Peptides/genetics , Peptides/therapeutic use , Vaccines/therapeutic use
6.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2200550

ABSTRACT

While 2021 ended with the world engulfed in the COVID-19 Omicron wave, 2022 has ended in almost all countries, except China, with COVID-19 being likened to the flu. In this context, the U.S. Food and Drug Administration (FDA) has authorized only 37 new drugs this year compared to an average of 52 in the last four years. Thus 2022 is the second lowest harvest after 2016 in the last six years. This ranking may be transient and will be confirmed in the coming years. In this regard, the reduction in the number of drugs accepted by the FDA this year applies only to the so-called small molecules as there has been no variation in the respective numbers of biologics or TIDES (peptides and oligonucleotides). Monoclonal antibodies (mAbs) continue to be the class with the most drugs authorized (9), while proteins/enzymes (5) and an antibody-drug conjugate complete the biologics harvest. In 2022, five TIDES and seven drugs inspired by natural products have received the green light, thus showing the same tendency as in previous years. Finally, pharmaceutical agents with nitrogen aromatic heterocycles and/or fluorine atoms continue to be predominant among small molecules this year. Furthermore, three drugs have been approved for imaging, reinforcing the trend in recent years for this class of treatments. A keyword in 2022 is bispecificity since four drugs have this property (two mAbs, one protein, and one peptide). Herein, the 37 new drugs approved by the FDA in 2022 are analyzed. On the basis of chemical structure alone, these drugs are classified as the following: biologics (antibodies, antibody-drug conjugates, proteins/enzymes), TIDES (peptide and oligonucleotides), combined drugs, natural products; nitrogen aromatic heterocycles, fluorine-containing molecules, and other small molecules.


Subject(s)
Biological Products , COVID-19 , Immunoconjugates , United States , Humans , Drug Approval , Fluorine , Pharmaceutical Preparations/chemistry , Antibodies, Monoclonal/chemistry , Biological Factors , Peptides/therapeutic use , Biological Products/therapeutic use , Biological Products/chemistry , Drug Industry , United States Food and Drug Administration , Oligonucleotides
7.
Zh Nevrol Psikhiatr Im S S Korsakova ; 122(10): 31-37, 2022.
Article in Russian | MEDLINE | ID: covidwho-2091095

ABSTRACT

The consequences of COVID-19 include a wide range of neurological, emotional and cognitive impairments. The pathogenesis of postcovid disorders is complex and has not been fully studied. The article discusses the pathogenesis and clinical manifestations of neuropostocoid. A hypothesis is formulated about the possible role of circumventricular organs in its formation. The main directions of treatment of patients with postcovid disorders are proposed.


Subject(s)
COVID-19 , Cognitive Dysfunction , Nervous System Diseases , Humans , Intercellular Signaling Peptides and Proteins/therapeutic use , Peptides/therapeutic use , COVID-19/complications , Nervous System Diseases/etiology , Nervous System Diseases/drug therapy , Cognitive Dysfunction/drug therapy
8.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2066124

ABSTRACT

Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Neuraminidase , Peptides/pharmacology , Peptides/therapeutic use
9.
Biochemistry (Mosc) ; 87(7): 590-604, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-2053145

ABSTRACT

Peptides are widely used for the diagnostics, prevention, and therapy of certain human diseases. How useful can they be for the disease caused by the SARS-CoV-2 coronavirus? In this review, we discuss the possibility of using synthetic and recombinant peptides and polypeptides for prevention of COVID-19 via blocking the interaction between the virus and its main receptor ACE2, as well as components of antiviral vaccines, in particular, against new emerging virus variants.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Antiviral Agents/therapeutic use , Humans , Peptides/therapeutic use , SARS-CoV-2
10.
Chembiochem ; 23(20): e202200415, 2022 10 19.
Article in English | MEDLINE | ID: covidwho-2013397

ABSTRACT

Peptides are ideal candidates for the development of antiviral therapeutics due to their specificity, chemical diversity and potential for highly potent, safe, molecular interventions. By restricting conformational freedom and flexibility, cyclic peptides frequently increase peptide stability. Viral targets are often very challenging as their evasive strategies for infectivity can preclude standard therapies. In recent years, several peptides from natural sources mitigated an array of viral infections. In parallel, short peptides derived from key viral proteins, modified with chemical groups such as lipids and cell-penetrating sequences, led to highly effective antiviral inhibitor designs. These strategies have been further developed during the recent COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2. Several anti-SARS-CoV-2 peptides are gaining ground in pre-clinical development. Overall, peptides are strong contenders for lead compounds against many life-threatening viruses and may prove to be the key to future efforts revealing viral mechanisms of action and alleviating their effects.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Pandemics , Peptides/pharmacology , Peptides/therapeutic use , Viral Proteins , Peptides, Cyclic , Lipids
11.
Sci Data ; 9(1): 294, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1890207

ABSTRACT

Since 2019, the novel coronavirus (SARS-COV-2) disease (COVID-19) has caused a worldwide epidemic. Anti-coronavirus peptides (ACovPs), a type of antimicrobial peptides (AMPs), have demonstrated excellent inhibitory effects on coronaviruses. However, state-of-the-art AMP databases contain only a small number of ACovPs. Additionally, the fields of these databases are not uniform, and the units or evaluation standards of the same field are inconsistent. Most of these databases have not included the target domains of ACovPs and description of in vitro and in vivo assays to measure the inhibitory effects of ACovPs. Here, we present a database focused on ACovPs (ACovPepDB), which contains comprehensive and precise ACovPs information of 518 entries with 214 unique ACovPs manually collected from public databases and published peer-reviewed articles. We believe that ACovPepDB is of great significance for facilitating the development of new peptides and improving treatment for coronavirus infection. The database will become a portal for ACovPs and guide and help researchers perform further studies. The ACovPepDB is available at http://i.uestc.edu.cn/ACovPepDB/ .


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Databases, Chemical , Humans , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/drug effects
12.
Clin Nutr ESPEN ; 50: 49-55, 2022 08.
Article in English | MEDLINE | ID: covidwho-1850882

ABSTRACT

BACKGROUND & AIMS: Enterocutaneous fistula (ECF) is a complication of surgery or inflammatory bowel disease associated with disproportionately high healthcare costs, morbidity, and mortality. We performed this proof-of-concept, feasibility, open-label, pilot randomized, crossover study to assess the efficacy and safety of the use of teduglutide (TED) to treat ECF. METHODS: Adults (age >18) with low-output (<200 mL/d) ECF were randomized to 2 months of continuing standard-of-care (SOC) followed by crossover to 2 months of SOC + TED or the reverse order. The primary efficacy endpoint was decrease in fistula volume by 20% of baseline 3-day average. Secondary efficacy endpoints were: fistula resolution and health-related quality of life questionnaire scores. RESULTS: Six out of 10 planned subjects were randomized and completed the study, which was terminated early due to slow enrollment during the Covid-19 pandemic. Overall subject compliance with daily TED injections was high (98%). Five of six enrolled subjects met the definition for the primary efficacy endpoint; these clinical responses were not observed during the SOC arm in these subjects. One subject experienced complete fistula closure during TED treatment. Adverse events during treatment were uncommon, minor, and usually resolved despite ongoing treatment. Quality of life survey responses were highly variable and did not correlate with fistula changes. CONCLUSIONS: Two months of teduglutide treatment was feasible, well-tolerated, and resulted in observable decreases in ECF drainage in the majority of subjects, including spontaneous closure in one subject. This therapy shows promise, but larger, multicenter confirmatory trials are required. CLINICALTRIALS: GOV: (NCT02889393).


Subject(s)
Intestinal Fistula , Peptides , Adult , Cross-Over Studies , Humans , Intestinal Fistula/drug therapy , Intestinal Fistula/etiology , Intestinal Fistula/surgery , Peptides/therapeutic use , Pilot Projects , Quality of Life , Treatment Outcome
13.
Molecules ; 27(9)2022 Apr 19.
Article in English | MEDLINE | ID: covidwho-1792595

ABSTRACT

The marine environment presents a favorable avenue for potential therapeutic agents as a reservoir of new bioactive natural products. Due to their numerous potential pharmacological effects, marine-derived natural products-particularly marine peptides-have gained considerable attention. These peptides have shown a broad spectrum of biological functions, such as antimicrobial, antiviral, cytotoxic, immunomodulatory, and analgesic effects. The emergence of new virus strains and viral resistance leads to continuing efforts to develop more effective antiviral drugs. Interestingly, antimicrobial peptides (AMPs) that possess antiviral properties and are alternatively regarded as antiviral peptides (AVPs) demonstrate vast potential as alternative peptide-based drug candidates available for viral infection treatments. Hence, AVPs obtained from various marine organisms have been evaluated. This brief review features recent updates of marine-derived AVPs from 2011 to 2021. Moreover, the biosynthesis of this class of compounds and their possible mechanisms of action are also discussed. Selected peptides from various marine organisms possessing antiviral activities against important human viruses-such as human immunodeficiency viruses, herpes simplex viruses, influenza viruses, hepatitis C virus, and coronaviruses-are highlighted herein.


Subject(s)
Biological Products , Virus Diseases , Viruses , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Humans , Peptides/pharmacology , Peptides/therapeutic use , Virus Diseases/drug therapy
14.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1785839

ABSTRACT

Respiratory syncytial virus infection (RSVI) is an acute medical and social problem in many countries globally. Infection is most dangerous for infants under one year old and the elderly. Despite its epidemiological relevance, only two drugs are registered for clinical use against RSVI: ribavirin (approved in a limited number of countries due to side effects) and palivizumab (Synagis), which is intended only for the prevention, but not the treatment, of infection. Currently, various research groups are searching for new drugs against RSV, with three main areas of research: small molecules, polymeric drugs (proteins and peptides), and plant extracts. This review is devoted to currently developed protein and peptide anti-RSV drugs.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Tract Infections , Aged , Antiviral Agents/therapeutic use , Humans , Infant , Palivizumab/therapeutic use , Peptides/pharmacology , Peptides/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Tract Infections/drug therapy
15.
Perm J ; 252021 12 14.
Article in English | MEDLINE | ID: covidwho-1766163

ABSTRACT

This case report describes a successful outcome involving a patient with severe COVID-19 viral pneumonia utilizing a novel therapeutic approach with the glycoprotein IIb/IIIa inhibitor, eptifibatide.


Subject(s)
COVID-19 Drug Treatment , Eptifibatide , Humans , Peptides/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Platelet Glycoprotein GPIIb-IIIa Complex
16.
Curr HIV Res ; 19(6): 465-475, 2021.
Article in English | MEDLINE | ID: covidwho-1688732

ABSTRACT

A number of different viral families have developed convergent methods to infect cells. Class I fusion proteins are commonly used by members of Arenaviridae, Coronaviridae, Filovirdae, Orthomyxoviridae, Paramyxoviridae, and Retroviridae. Class I viral fusion proteins are trimers that are involved in recognizing the cellular receptor, with a region that is responsible for fusing the viral and target cell membranes. During the fusion process, the fusion region folds into a six-helix bundle (6 HB) which approximates the two membranes leading to fusion. For Human Immunodeficiency Virus (HIV), the gp41 subunit is responsible for the formation of this 6 HB. The fusion inhibitor drug enfuvirtide, or T20, is the only US Food and Drug Administration and European Medicines Agency approved drug which targets this crucial step and has been widely used in combination regimens for the treatment of HIV since March 2003. In this review, we describe the current state of peptide-based fusion inhibitors in the treatment of HIV, and review how the field of HIV research is driving advances in the development of similar therapeutics in other viral systems, including the Severe Acute Respiratory Syndrome (SARS) coronaviruses.


Subject(s)
HIV Fusion Inhibitors , HIV Infections , Anti-Retroviral Agents/therapeutic use , HIV Envelope Protein gp41 , HIV Fusion Inhibitors/pharmacology , HIV Fusion Inhibitors/therapeutic use , HIV Infections/drug therapy , HIV Infections/prevention & control , Humans , Peptide Fragments , Peptides/pharmacology , Peptides/therapeutic use
17.
IEEE J Biomed Health Inform ; 26(10): 5067-5074, 2022 10.
Article in English | MEDLINE | ID: covidwho-1532698

ABSTRACT

Rapid increase in viral outbreaks has resulted in the spread of viral diseases in diverse species and across geographical boundaries. The zoonotic viral diseases have greatly affected the well-being of humans, and the COVID-19 pandemic is a burning example. The existing antivirals have low efficacy, severe side effects, high toxicity, and limited market availability. As a result, natural substances have been tested for antiviral activity. The host defense molecules like antiviral peptides (AVPs) are present in plants and animals and protect them from invading viruses. However, obtaining AVPs from natural sources for preparing synthetic peptide drugs is expensive and time-consuming. As a result, an in-silico model is required for identifying new AVPs. We proposed Deep-AVPpred, a deep learning classifier for discovering AVPs in protein sequences, which utilises the concept of transfer learning with a deep learning algorithm. The proposed classifier outperformed state-of-the-art classifiers and achieved approximately 94% and 93% precision on validation and test sets, respectively. The high precision indicates that Deep-AVPpred can be used to propose new AVPs for synthesis and experimentation. By utilising Deep-AVPpred, we identified novel AVPs in human interferons- α family proteins. These AVPs can be chemically synthesised and experimentally verified for their antiviral activity against different viruses. The Deep-AVPpred is deployed as a web server and is made freely available at https://deep-avppred.anvil.app, which can be utilised to predict novel AVPs for developing antiviral compounds for use in human and veterinary medicine.


Subject(s)
Artificial Intelligence , COVID-19 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Interferons , Pandemics , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use
18.
Chem Biol Interact ; 351: 109706, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1464614

ABSTRACT

The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.


Subject(s)
Drug Carriers/chemistry , Lung/metabolism , Peptides/administration & dosage , Proteins/administration & dosage , Administration, Inhalation , Animals , Drug Carriers/administration & dosage , Humans , Lung/drug effects , Lung Diseases/drug therapy , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Peptides/therapeutic use , Proteins/therapeutic use
19.
J Immunol ; 207(10): 2521-2533, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1468558

ABSTRACT

Many patients with coronavirus disease 2019 in intensive care units suffer from cytokine storm. Although anti-inflammatory therapies are available to treat the problem, very often, these treatments cause immunosuppression. Because angiotensin-converting enzyme 2 (ACE2) on host cells serves as the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to delineate a SARS-CoV-2-specific anti-inflammatory molecule, we designed a hexapeptide corresponding to the spike S1-interacting domain of ACE2 receptor (SPIDAR) that inhibited the expression of proinflammatory molecules in human A549 lung cells induced by pseudotyped SARS-CoV-2, but not vesicular stomatitis virus. Accordingly, wild-type (wt), but not mutated (m), SPIDAR inhibited SARS-CoV-2 spike S1-induced activation of NF-κB and expression of IL-6 and IL-1ß in human lung cells. However, wtSPIDAR remained unable to reduce activation of NF-κB and expression of proinflammatory molecules in lungs cells induced by TNF-α, HIV-1 Tat, and viral dsRNA mimic polyinosinic-polycytidylic acid, indicating the specificity of the effect. The wtSPIDAR, but not mutated SPIDAR, also hindered the association between ACE2 and spike S1 of SARS-CoV-2 and inhibited the entry of pseudotyped SARS-CoV-2, but not vesicular stomatitis virus, into human ACE2-expressing human embryonic kidney 293 cells. Moreover, intranasal treatment with wtSPIDAR, but not mutated SPIDAR, inhibited lung activation of NF-κB, protected lungs, reduced fever, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of SARS-CoV-2 spike S1-to-ACE2 interaction by wtSPIDAR may be beneficial for coronavirus disease 2019.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/therapeutic use , COVID-19/therapy , Lung/immunology , Peptides/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/immunology , Cytokines/metabolism , Female , HEK293 Cells , Humans , Inflammation Mediators/metabolism , Locomotion , Male , Mice , Molecular Targeted Therapy , NF-kappa B/metabolism , Peptides/genetics , Peptides/therapeutic use , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
20.
ACS Appl Mater Interfaces ; 13(41): 48469-48477, 2021 Oct 20.
Article in English | MEDLINE | ID: covidwho-1461961

ABSTRACT

The COVID-19 pandemic highlighted the importance of developing surfaces and coatings with antiviral activity. Here, we present, for the first time, peptide-based assemblies that can kill viruses. The minimal inhibitory concentration (MIC) of the assemblies is in the range tens of micrograms per milliliter. This value is 2 orders of magnitude smaller than the MIC of metal nanoparticles. When applied on a surface, by drop casting, the peptide spherical assemblies adhere to the surface and form an antiviral coating against both RNA- and DNA-based viruses including coronavirus. Our results show that the coating reduced the number of T4 bacteriophages (DNA-based virus) by 3 log, compared with an untreated surface and 6 log, when compared with a stock solution. Importantly, we showed that this coating completely inactivated canine coronavirus (RNA-based virus). This peptide-based coating can be useful wherever sterile surfaces are needed to reduce the risk of viral transmission.


Subject(s)
Antiviral Agents/chemistry , Peptides/chemistry , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Bacteriophages/drug effects , COVID-19/virology , Coronavirus/drug effects , Coronavirus/isolation & purification , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Dihydroxyphenylalanine/chemistry , Dog Diseases/drug therapy , Dog Diseases/virology , Dogs , Humans , Metal Nanoparticles/chemistry , Peptides/pharmacology , Peptides/therapeutic use , SARS-CoV-2/isolation & purification , Virus Inactivation/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL